THE DEFINITION OF DISTANCE AND DIAMETER IN FUZZY SET THEORY by

GIANGIACOMO GERLA and RAFFAELE VOLPE

Dep.Mat.and Appl. R.Caccioppoli via Mezzocannone 8 80134 NAPOLI ITALY

1. INTRODUCTION

In any metric space (S,d) it is possible to define the distance between two subsets X and Y of S by setting $\delta(X,Y)=0$ if X=Ø or Y=Ø and

(1) $\{(X,Y) = \inf \{d(x,y)/x \in X, y \in Y\} \text{ otherwise.}$

The distance between a point x and a set X is defined by setting $\delta(x,X)=\delta(\{x\},X)$.

This allows, for instance, to characterize the non-empty closed sets as the sets X for which x ϵ X if and only if $\delta(x,X)=0$.

Another foundamental concept is that of diameter $\Delta(X)$ of a set. One defines it by setting $\Delta(X)=0$ if $X=\emptyset$ and

(2) $\Delta(X) = \sup \{d(x,y)/x \in X, y \in X\}$ otherwise.

In this paper our aim is to define analogue concepts for the fuzzy sets. So we define the <u>distance</u> between two fuzzy sets and, hence, between a fuzzy point and a fuzzy set.

We call <u>closed</u> a fuzzy set containing all the fuzzy points that have distance from it equals to zero, and we show that the complements of closed sets determine a fuzzy topology, the fuzzy topology of lower semi-continuous functions.

Also, we define the <u>diameter</u> of a fuzzy set. This will allow to characterize the fuzzy points as the fuzzy sets with diameter equals to zero.

2. PREREQUISITES AND DEFINITIONS

Let X be a set and R the set of real numbers. We say fuzzy subset of X or, more simply, fuzzy set [8] a function $f:X \to [0,1]$ where [0,1] denotes the set $\{\alpha \in \mathbb{R}/0 \le \alpha \le 1\}$.

We denote by F(X) the class of the fuzzy subsets of X. If $f,g \in F(X)$ then we set $f \leq g$ iff $f(x) \leq g(x)$ for any $x \in X$. Moreover -f, the complement of f is the fuzzy subset of X defined by setting (-f)(x)=1-f(x) for any x ϵ X. If (f_i)_{i ϵ I} is a family of fuzzy subsets of X then $\bigvee_{i \in I} f_i$ and $\bigwedge_{i \in I} f_i$ are the fuzzy subsets of X defined by setting

 $(\bigvee_{i \in I} f_i)(x) = \sup_{i \in I} \{f_i(x)\}$ and $(\bigwedge_{i \in I} f_i)(x) = \inf_{i \in I} \{f_i(x)\}$ for any $x \in X$.

We denote by f_0 and f_1 the fuzzy sets for which $f_0(x)=0$ and $f_1(x)=1$ for any $x \in X$.

Moreover, if $\alpha \in [0,1]$, we call $\underline{\alpha}$ -cut of a fuzzy set f the subset $C_f^{\alpha} = \{x \in X/f(x) > \alpha\}$.

A fuzzy set f is called <u>crisp</u> if $f(x) \in \{0,1\}$ for any $x \in X$. The fuzzy sets crisp can be interpreted as characteristic functions of subsets of X and, hence, they can be identified with these subsets.

For any $a \in X$ and $a \in (0,1] = \{x \in \mathbb{R}/0 < x \le 1\}$ the fuzzy set f_a , defined by setting $f_a(x) = 0$ if $x \ne a$ and $f_a(x) = a$ if x = a, is called <u>fuzzy</u> point ([7],[3],[4]).

point ([7],[3],[4]).

We say that the fuzzy point f_a belongs to the fuzzy set f_a f_a

We can now define the concept of fuzzy topological space (see references). To this aim we give the following definitions.

DEFINITION 1. A class ? of fuzzy subsets of X constitutes a <u>fuzzy topology</u> if the following conditions are verified:

- a) f₀, f₁€ ?
- b) if f,g \in 7 then f \land g \in 6
- c) $\bigvee_{i \in I} f_i \in \mathcal{C}$ for any family $(f_i)_{i \in I}$ of elements in \mathcal{C} .

The pair (X, \mathcal{T}) is named <u>fuzzy topological space</u>; the elements of \mathcal{T} are named <u>open</u>, the complements of these elements are named <u>closed</u>.

The following definition is dual of Definition 1.

DEFINITION 2. A class C F(X) is a <u>system of closed</u>
fuzzy subsets of X if the following conditions are verified:

- a) f₀,f₁€C
- b) if $f,g \in C$ then $f y g \in C$
- c) $\bigwedge_{i \in I} f_i \in C$ for any family $(f_i)_{i \in I}$ of elements of C.

Obviously, the class of complements of a system of closed fuzzy set is a fuzzy topology and the class of complements of a fuzzy topology constitutes a system of closed fuzzy sets.

3. DISTANCE BETWEEN TWO FUZZY SETS

Let (S,d) be a metric space. We define a <u>distance</u> between two fuzzy subsets f,g of S in the following way:

(3) $d(f,g) = \int_0^1 \mathcal{S}(C_f^{\alpha}, C_g^{\alpha}) d\alpha$ Note that if $\beta > \alpha$ then $C_f = \{x \in S/f(x) > \beta\} \subseteq C_f = \{x \notin S/f(x) > \alpha\}$ and, hence, $\mathcal{S}(C_f^{\beta}, C_g^{\beta}) > \mathcal{S}(C_f^{\alpha}, C_g^{\alpha})$. This proves that $\mathcal{S}(C_f^{\alpha}, C_g^{\alpha})$ is an increasing function of α and, hence, that the distance between two fuzzy sets is defined for any $f,g \in F(S)$, even if it is

finite or infinite. An example of a pair of fuzzy sets with infinite distance is the following.

Let (S,d) be the set of real numbers with the usual distance, and consider f_0^1 and f, where f is the fuzzy set for which f(x) = x/x+1; then $d(f_0^1, f)$ is equal to ∞ .

If in f and g there are two crisp points, that is if there exist x,y in S for which f_x^1 and f_y^1 belong rispectively to f and g, then, being any contribution $\delta(C_f, C_g) \leq d(x,y)$, the integral in (3) assumes a finite value.

If f and g are the characteristic functions of two subsets X and Y of S then $C_{\underline{f}}^{\alpha}=X$ and $C_{\underline{g}}^{\alpha}=Y$ for every $\alpha>0$, hence $d(f,g)=-\int_0^{\gamma} \int_0^{\gamma} (X,Y) d\alpha = 1 \cdot \int_0^{\gamma} (X,Y) = \int_0^{\gamma} (X,Y) d\alpha = 1 \cdot \int_0^{\gamma} (X,Y$

Obviously the distance between a fuzzy point f_x^{α} and a fuzzy set g is $\int_0^{\alpha} \delta(x, c_g^{\beta}) d\beta$. Moreover the distance between two fuzzy points f_b^{β} and f_c^{γ} is equal to $\int_0^{\beta \Lambda^{\gamma}} \delta(\{b\}, \{c\}) d\alpha$ and therefore

(4) $d(f_b^{\beta}, f_c^{\gamma}) = [\gamma \wedge \beta] \cdot d(b, c)$.

This proves that, for the fuzzy points crisp, the distance defined by (3) coincides with the usual one between points.

It is interesting to examine the case that f and g assume values in a finite subset $\{\chi_0, \ldots, \chi_n\}$ of [0,1]. Then, if $0=\chi_0 < \chi_0 < \ldots < \chi_n=1$ we have

if, for i=1,...,n, $\chi_{i}-\chi_{i-1}=1/n$ (6) $d(f,g)=1/n \cdot (\sum_{i=1}^{n} \delta(C_{f}^{i}, C_{g}^{i}))$.

In general, we can also utilize Formulas (5) and (6) to compute a suitable approximation of the distance between two fuzzy subsets.

We can give a definition of closure for fuzzy sets:

either $f=f_0$ or, for every fuzzy point f_X^{α} , $f_X^{\alpha} \in f$ iff. f_X^{α} , $f_X^{\alpha} = 0$. We denote by C the class of the metrically closed fuzzy sets.

PROPOSITION 1. The set C is a system of closed fuzzy subsets of X. Equivalently, the set \mathfrak{F} of the relative complements defines a fuzzy topology. ROOF. It is obvious that f_0 and f_1 are elements of C. Let $f \in \mathfrak{C}$ and $g \in \mathfrak{C}$, and let $f_X^{\mathfrak{A}}$ a fuzzy point. If $f_X^{\mathfrak{A}} \in \mathfrak{f} \vee g$ it is obvious that $d(f_X^{\mathfrak{A}}, f \vee g) = 0$. Conversely, suppose that $d(f_X^{\mathfrak{A}}, f \vee g) = 0$, then $b(x, C_{f \vee g}^{\mathfrak{B}}) = 0$ for every $\beta \wedge A$. Sup

 $d(f_X^{\alpha}, f \vee g) = 0$, then $\delta(x, C_{f \vee g}^{\beta}) = 0$ for every $\beta < \alpha$. Suppose, by absurd that $f_X^{\alpha} \notin f \vee g$, then $f(x) < \alpha$ and $g(x) < \alpha$, i.e. $f_X^{\alpha} \notin f$ and $f_X^{\alpha} \notin g$. This implies that $d(f_X^{\alpha}, f) > 0$ and $d(f_X^{\alpha}, g) > 0$ and therefore that $\delta(x, C_f^{\gamma}) > 0$ and $\delta(x, C_g^{\gamma}) > 0$ for a suitable $f(x, C_f^{\gamma}) > 0$ and $f(x, C_f^{\gamma}) > 0$ and, since $f(x, C_f^{\gamma}) = 0$ and, since $f(x, C_f^{\gamma}) = 0$ and $f(x, C_f^{\gamma}) > 0$ and

Let $(f_i)_{i\in I}$ be a family of elements of C and set $f = \bigwedge_{i\in I} f_i$: we have to prove that $f \in C$. If $f_x^{\alpha} \in f$ it is obvious that $d(f_x^{\alpha}, f) = 0$. Assume that $d(f_x^{\alpha}, f) = 0$, then $\delta(x \, C_f^{\beta}) = 0$ for every $\beta < \alpha$. If, by absurd, $\alpha > f(x)$, then $\alpha > f_j(x)$, and therefore $f_x^{\alpha} \neq f_j$, for a suitable

jeI. Thus $\int_0^{\alpha} \delta(x, c_{f,j}^{\beta}) d\beta > 0$ and there exists $Y < \alpha$ such that $\delta(x, c_{f,j}^{\gamma}) > 0$. Since $c_f^{\gamma} \in c_{f,j}^{\gamma}$, we have also that $\delta(x, c_f^{\gamma}) \geq (x, c_{f,j}^{\gamma}) > 0$, an absurd. Thus we have proved that $\alpha \leq f(x)$ and therefore that $f_x^{\alpha} \in f$. This complete the proof.

Now we show that the above defined fuzzy topology logy coincides with the natural fuzzy topology defined in [2].

PROPOSITION 2. C is the class of the upper semicontinuous functions from S to [0,1]. It follows that \mathcal{T} is the class of the lower semicontinuous functions.

PROOF. Let feC, then, to prove that f is upper semicontinuous, it suffices to prove that $\{x \in S/f(x) < \alpha'\}$ is open for every $\alpha \in [0,1]$. Equivalently, we can prove that C_f^{α} is closed. Let $x \in S$ and $\delta(x, C_f^{\alpha}) = 0$, then $\delta(x, C_f^{\beta}) = 0$ for every $\beta < \alpha'$ and therefore $d(f_x^{\alpha}, f) = \int_0^{\alpha'} \delta(x, C_f^{\beta}) d\beta = 0$. Thus $f_x^{\alpha} \in f$ and $x \in C_f^{\alpha}$. This proves that C_f^{α} is closed.

Conversely, suppose f upper semicontinuous or, equivalently, that C_f^{α} is closed for every $\alpha \in [0,1]$. Moreover, suppose that $d(f_x^{\alpha},f)=\int_0^{\alpha}\delta(x,C_f^{\beta})d\beta=0$, then $\delta(x,C_f^{\beta})=0$ for every $\beta<\alpha$. This implies that $x\in C_f^{\beta}$ and therefore that $f(x) \geq \beta$ for every $\beta<\alpha$. In conclusion $f(x) \geq \alpha$ and $f_x^{\alpha} \in f$. This proves that $f \in C$.

4. DIAMETER OF A FUZZY SET

Let f be a fuzzy subset of S, then we set

(7) $\Delta(f)=\sup\{d(x,y)/x \text{ and } y \text{ are fuzzy points of } f\}$.

The number $\Delta(f)$ may be either finite or infinite,
we call it the diameter of the fuzzy set f.

If $\Delta(f) < \infty$ then f is called <u>bounded</u>. Being $\delta(f_x^{\gamma}, f_y^{\beta}) = d(x,y) \cdot (\gamma \wedge \beta)$, it is obvious that
(8) $\Delta(f) = \sup \{d(x,y) \cdot [f(x) \wedge f(y)] / x, y \in S \}$.

PROPOSITION 3. If f is crisp then the definition of diameter is the classical one. Moreover if $f \le g$ then $\triangle(f) \not\in \triangle(g)$.

PROOF. If f is the characteristic function of the set X then $\triangle(f) = \sup \{d(x,y) \cdot [f(x) \land f(y)] / f(x) \not= 0 \ f(y) \not= 0 \} = \sup \{d(x,y) / x \in X, y \in X \}$.

Suppose that $f \le g$, then $d(x,y) \cdot [f(x) \land f(y)] \le d(x,y) \cdot [g(x) \land g(y)]$ and $\triangle(f) \not= \triangle(g)$.

PROPOSITION 4. The diameter of a fuzzy set $f \neq f_0$ is equal to zero iff f is a fuzzy point.

PROOF. It is obvious that the diameter of a fuzzy point is zero. Conversely, suppose that f is a fuzzy set for which $\Delta(f)=0$. Then, by (8), $d(x,y)\cdot [f(x)\Lambda f(y)]=0$ for every $x,y\in S$. By hypothesis, there exists a $\in S$ for which $f(a)\neq 0$ and, if $y\neq a$, since $d(a,y)\neq 0$ then $f(a)\Lambda f(y)=0$. This proves that f(y)=0 for every $y\neq a$ and therefore that f is a fuzzy point.

PROPOSITION 5. For any $f \in F(S)$ and $Q \in (0, 1]$

(9) $\Delta(c_f^q) \leq \Delta(f)/\alpha$

Then every q-cut of a bounded fuzzy set is bounded while the converse falls.

PROOF. If $x,y \in C_f^{\alpha}$, i.e. $f(x) \geqslant \alpha$, $f(y) \geqslant \alpha$, then $d(x,y) \cdot [f(x) \land f(y)] \geqslant d(x,y) \cdot \alpha$. This proves that $\Delta(f) \geqslant \alpha \cdot d(x,y)$ or, equivalently, $d(x,y) \leqslant \Delta(f)/\alpha$.

To prove that there exists a fuzzy set f such that $\Delta(f) = \infty$ and $\Delta(C_f^X) < \infty$ for any $\alpha \in [0,1]$, let S be the positive real numbers set and define $f:S \to [0,1]$ by setting $f(x)=1/(\sqrt{x}+1)$. Now $\Delta(f)>d(0,x)\cdot(f(0)\wedge f(x))=x/(\sqrt{x}+1)$ for any $x \in S$. Then $\Delta(f)=\infty$ while it is obvious that every cut of f is bounded.

Proposition 5 shows that our definition of bounded fuzzy set

is different from Kaufmann's definition[6].

In metric space theory one proves that a subset is bounded if and only if it is contained in a suitable circle. In order to obtain a similar result for fuzzy subsets we give the following definition.

DEFINITION 4. We call <u>f-circle</u> with <u>center</u> f_c^{χ} and <u>radius</u> r, the fuzzy set $C(f_c^{\chi}, r)$ such that, for any fuzzy point f_b^{β} , $f_b^{\beta} \in C(f_c^{\chi}, r)$ iff $d(f_b^{\beta}, f_c^{\chi}) \le r$ and $\beta \le \chi$.

PROPOSITION 6. The f-circle $C(f^{\flat}, r)$ is the fuzzy set defined by (10) $f(z) = \begin{cases} y & \text{if } d(z,c) \leq r/\xi \\ r/d(z,c) & \text{otherwise.} \end{cases}$

Moreover the diameter of $C(f_c^{\delta}, r)$ is not greater than 2r. PROOF. By definition $f = V\{f_x^{\beta}/\beta \leqslant \gamma, x \in S \text{ and } d(f_x^{\beta}, f_c^{\delta}) \leq r\}$, then $f(z) = V\{f_z^{\beta}/\beta \leqslant \gamma \text{ and } d(f_z^{\beta}, f_c^{\delta}) \leq r\} = V\{\beta/\beta \leqslant \gamma \text{ and } \beta \cdot d(x, c) \leqslant r\}$. This proves (10).

'To show that $\Delta(f) \le 2r$ observe that, for every pair of fuzzy points f_b^{β} , $f_b^{\beta'}$ with $\beta \le \gamma$ and $\beta \le \gamma$, the following triangular inequality holds:

inequality holds: $(11) \ d(f_b^{\beta}, f_{b'}^{\beta'}) \lesssim d(f_b^{\beta}, f_c) + d(f_c, f_{b'}).$ In fact, by $d(b, b') \leqslant d(b, c) + d(c, b')$, we have $(\beta \land \beta') \cdot d(b, b') \leqslant (\beta \land \beta') \cdot d(b, c) + (\beta \land \beta') \cdot d(c, b') \leqslant \beta \cdot d(b, c) + \beta' \cdot d(c, b') = (\beta \land \beta) \cdot d(b, c) + (\beta \land \beta) \cdot d(c, b') = d(f_b^{\beta}, f_c^{\beta}) + d(f_c^{\gamma}, f_b^{\beta'}).$ But $(\beta \land \beta') \cdot d(b, b') = d(f_b^{\beta}, f_b^{\beta'})$ and then (11) is proved. From this it follows that $\Delta(f) \leqslant 2r.$

PROPOSITION 7. Let f/a bounded fuzzy set, $f = \sup f(x)$ and $c \in S$ a point such that f(c) > 0. Then f is contained in the f-circle $C(f_c^{\vee}, \Delta(f)/f(c))$. It follows that a fuzzy set f is bounded if and only if it is contained in an f-circle.

PROOF. Let $r = \Delta(f)/f(c)$ and denote by f the f-circle $C(f_c, r)$. If f d(f, c) if f then f then f then f and therefore f then f

Finally, observe that, if (S,d) is the euclidean plane, then the diameter of an f-circle $C(f_c,r)$ is just 2r. Indeed, let z and z' two points collinear with c such that $d(z,c)=d(z',c)=r/\gamma$. Then $d(z,z')=2r/\gamma$ and $d(f_z',f_z')=\gamma\cdot d(z,z')=2r$. Since f_z' and f_z' are fuzzy points of the f-circle $C(f_c',r)$, this proves that the relative diameter is 2r.

REFERENCES

- [1] C.L.Chang, Fuzzy topological spaces, J.Math.Anal. Appl. 24 (1968) 182-190.
- [2] F. Conrad, Fuzzy topological concepts, J. Math. Anal. Appl. 74 (1980) 432-440.
- [3] G.Gerla, On the concept of fuzzy point, to appear.
- [4] G.Gerla, Generalized fuzzy points, J. Math. Anal. Appl. (to appear).
- [5] G.Gerla, Representation of fuzzy topologies, Fuzzy Sets and Systems 11 (1983) 103-113.
- [6] A. Kaufmann, Introduction à la théorie des sous-ensembles flous, Ed. Masson (1975).
- [7] C.K.Wong, Fuzzy points and local properties of fuzzy topology, J.Math.Anal.Appl. 46 (1974) 316-328.
- [8] L.A.Zadeh, Fuzzy sets, Information and control 8 (1965) 338-353.